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Stationary distribution of finite-size systems with absorbing states
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We introduce a procedure that allows us to obtain nontrivial stationary distributions of finite-size models
with absorbing states. Two models are studied: the contact process and the sandpile model with height restric-
tion. To avoid the permanence of the system in the absorbing state we create a small perturbation that drives
the system out of the absorbing state. In the former model a particle is created, in the latter an active site is
created. The stationary distributions around the critical point are analyzed by the use of finite-size scaling.
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I. INTRODUCTION

The thermodynamic properties of a given system is ob-
tained by performing the thermodynamic limit in which the
densities are kept constant while the size of the system grows
without limits. If we are using Monte Carlo simulations, in
which case the system is always finite, it suffices to study
systems with sizes larger than the correlation length. If our
purpose is the study of the critical region, we should keep in
mind that the correlation length diverges at the critical point
and we cannot anymore study systems with sizes larger than
the correlation length. However, this problem can be over-
come by the help of the finite-size scaling hypothesis. That
is, numerical simulations are performed on finite systems of
several sizes. If the systems are big enough so that they are
in the finite-size scaling region then one can extract the ther-
modynamic limit properties including the critical behavior.

The study of finite systems on the other hand poses a
particular problem which concerns models with one absorb-
ing state such as the contact process [1-3] or models with
infinitely many absorbing states [4—11]. Here we analyze
only two representative models: the usual contact process
and the sandpile model with height restriction [11]. In the
thermodynamic limit, these systems exhibit two phases: an
active phase where the order parameter p is nonzero (super-
critical regime) and a nonactive phase in which p=0 (sub-
critical regime). However, if the system is finite the nonequi-
librium dynamics leads the system to fall into the absorbing
state and p will be zero even in the supercritical regime. Of
course, this may not happen in an actual simulation of the
active state if the number of Monte Carlo steps is not suffi-
ciently large. In any case, to avoid the permanence of the
system in the absorbing state, we use the following proce-
dure: (a) in the contact process we create a particle (or,
equivalently, we forbid the last particle to be annihilated),
and (b) in the sandpile model with height restriction an ac-
tive site is created by moving a particle on the top of another
one. Concerning the properties of the system in the thermo-
dynamic limit, these perturbations are found to be irrelevant,
as shown by our numerical results.

By the above procedure, we are eliminating, strictly
speaking, the absorbing state so that now p is always non-
zero. This is not a problem if we are in the supercritical
regime in which the order parameter is in fact nonzero. In the
subcritical regime, although p is nonzero it will decrease and
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eventually vanish in the thermodynamic limit. One advan-
tage is that now p will be a continuous and differentiable
function of the external parameter, being treatable by a
finite-size scaling analysis.

Here we study numerically the contact process and the
sandpile model with height restriction. The procedure ex-
plained above allows us to determine the stationary distribu-
tion at the critical point and in the subcritical regime as well.
We also determine the critical point and the critical expo-
nents for both models. The exponents and the nonuniversal
parameters are found to be in agreement with results ob-
tained in the standard manner.

It is worth mentioning that there are other ways of gener-
ating the stationary state for finite-size systems. de Oliveira
and Dickman [12] define a quasistationary distribution by
studying the ordinary model as function of time. Ziff and
Brozilow [13] and Tomé and de Oliveira [14] used conserved
versions of the original models in which the absorbing state
has been eliminated.

II. FINITE-SIZE SCALING

Let us consider a finite system of linear size L and let € be
the deviation of the external parameter from its critical value.
The quantities of interest are p={x) and g=(x>) where x is a
stochastic variable associated to the order parameter. The
quantities p and ¢ can be obtained from the stationary prob-
ability density P(x) of the stochastic variable x. In order to
set up the finite-size scaling relations for the quantities of
interest we will assume the following scaling

P(L,e,x)dx = P(eL""1 xLP/" )P 1 dx, (1)

where S and v, are the critical exponents associated with the
order parameter and the spatial correlation length, and

P(y,z) is a universal probability density function. From Eq.
(1), we obtain scaling relations for the quantities p and ¢
which are

p(L,e)=LP"p(eL""1) 2)
and
q(L.e) =L 1 g(eL"") 3)

where p(y) and g(y) are universal functions.
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FIG. 1. Density of particles p for the contact process as a func-
tion of the creation rate \ for several values of the system size L.

Defining the reduced second-order cumulant u by

u=d 4)

we get the following scaling relation:
u(L,e) =ii(eL""L) (5)

where u(y) is a universal function. This reduced second-
order cumulant is useful to determine the critical point since
at the critical point u(L,0) will be independent of L.

In the supercritical regime, and in the limit L— oo, the
order parameter behaves as

p~ &b (6)

In the subcritical regime, the relevant quantity is the average
number of particle, in the contact process, or the number of
active particles, in the sandpile model with height restriction,
given by n=L%. In the limit L — o this quantity behaves as

|_(r’ o=dv, -, (7)

n~le

which is a result obtained by combining the scaling relation
(2) with the assumption that p decays as 1/L¢ in the subcriti-
cal regime.

III. THE CONTACT PROCESS
A. Finite system

We have simulated the one-dimensional contact process
with creation rate equal to A and annihilation rate equal to
unity, with L sites and periodic boundary conditions. Each
site of the lattice can be either empty or occupied by just one
particle. The simulation is performed as follows. At each
time step, a site is chosen at random, with probability 1/L.
(a) If the site is empty then one looks at one of its neighbor-
ing sites with equal probability. If the chosen neighboring
site is occupied then a particle is created at the chosen site
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FIG. 2. Number of particles n=Lp for the contact process as a
function of the creation rate \ for several values of the system size
L. The continuous line represents the expansion of n up to A\? as
given by Eq. (20).

with probability N/(1+X\). (b) If the site is occupied by a
particle then the particle is annihilated with probability
1/(1+\). If the particle is the last one in the lattice it is not
annihilated. At each time step the time is increased by an
interval equal to 1/L.

We have calculated in the stationary state the density of
particles p and the reduced second-order cumulant u for sev-
eral values of L. Figure 1 shows p as a function of N\ for
several values of L. As expected the density p is always
nonzero. In the supercritical regime it accumulates at a cer-
tain value as L— e, but in the subcritical regime it decreases
and vanishes, in this limit. The same behavior can be seen in
Fig. 2 where n=Lp is plotted as a function of A. In the
subcritical regime n accumulates at a certain value and in the
supercritical it increases without bounds. Figure 3 shows the
reduced second-order cumulant u as a function of A for sev-
eral values of L. From the crossing of u, we determine the
critical values \,=3.298(2) and u,=0.205(4).

From the log-log plot of p(L,0) versus L we determine
the exponent ratio 8/v, by Eq. (2). The exponent 3 and v
can be obtained separately by the use of Egs. (6) and (7). The
numerical results obtained from the numerical data are in
agreement with the accepted values, namely, 8=0.277 and
v, =1.097 for the contact process [2]. We have used these
values for the exponent B and v, to obtain the data collapse
for the density p shown in Fig. 4. Although the values of L
are not large, a good collapse of the data is obtained.

B. Infinite system

In the subcritical regime the density of particles p will
vanish in the thermodynamic limit. It is therefore convenient
in this case to simulate an infinite system with a finite num-
ber of particles. This is performed as follows. At each time
step a particle (instead of a site) is chosen at random, with
probability 1/X, where X is the number of particles. (a) With
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FIG. 3. Reduced second-order cumulant u for the contact pro-
cess as a function of the creation rate N for several values of the
system size L. The continuous line represents the expansion of u up
to A\? as given by Eq. (22).

probability 1/(1+X\), the particle is annihilated, except if it is
the last particle in which case nothing is done. (b) With prob-
ability A/(1+\), one chooses one of the two nearest neigh-
bor sites of the particle. If the neighboring site is empty then
a new particle is created at this site. At each time step the
time is increased by an interval equal to 1/X. In an actual
simulation one may use a finite system and check whether
the particles being created do not reach the border of the
lattice.

We have performed the numerical simulation on an infi-
nite system by starting from a configuration with just one
particle. As long as the A <\. the number of particles re-
mains finite. It does not increase without bounds as would
occur for A=A\,.. For each value of A, there is a cluster of
particles that becomes a fractal at the critical point [15]. We
have determined the average number of particles n for sev-
eral values of . We have also determined the distribution of
the size of the cluster of particles. This is done by measuring
the distance ¢ between the two particles at the border of the
cluster. It is found that the probability distribution of € de-
cays exponentially, for sufficiently large €. From the expo-
nential decay we get a measure of the spatial correlation
length &. Around the critical point the quantity ¢ behaves as

&~ e[ (8)
On the other hand, n and £ are related to each other by
n~ & )

where dj is the fractal dimension of the critical cluster. From
the relation (7) it follows that dp=d—-B/v,.

Another quantity of interest is the time 7 between two
consecutive passages of the system to a configuration with
just one particle. It is found that the probability distribution
of the first passage time 7 decays exponentially, for suffi-
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FIG. 4. Data collapse of probability density P(L,0,x) at the
critical point obtained for several values of L.

ciently large 7. From the exponential decay we get a measure
for the time correlation length 7. Around the critical point 7
behaves as

7~ |e| ™. (10)
Therefore, the relation between & and 7 is given by
T~ & (11)

where z=y /v, is the dynamical exponent.

From the numerical simulation we have determined the
quantities n, ¢ and 7 for several values of N in the subcritical
regime. The exponents obtained from the numerical data are
consistent with those of the directed percolation universality
class [2].

C. Regime of small creation rate

In the regime of small creation rate we show that it is
possible to obtain the stationary distribution by means of a
series expansion in N. These results can then be compared
with the above numerical results. When the creation rate is
sufficiently small the number of particles will be small and
there are only a few relevant configurations. Let us denote by
A the state with just one particle (...0001000...); B the state
with two particles in a row (...0011000...1); C the state with
three particles in a row (...0011100...); and D the state with
two particles separated by a vacant site (...0010100...).
From the dynamic rules we can write down the following
equations for the stationary probability of these states:

AP(A) =2P(B) + 2P(D), (12)
AP(B) + 2P(B) = \P(A) + 2P(C), (13)
AP(C) +3P(C) = \P(B) + \P(D), (14)
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FIG. 5. Density of active sites p for the sandpile model with
height restriction as a function of the density of particles { for
several values of the system size L.

2\P(D)+2P(D)=P(C), (15)

where we have omitted the terms related to any other con-
figurations. Next we assume that P(A) is of order unity, that
P(B) is of order \, and that P(C) and P(D) are of order \>.
The solution up to order \? is then

2
P(A)=1-%+%, (16)
NN

P(B) = P (17)

2
P(C)=%, (18)

2
P(D):%. (19)

From these solutions we get the average number of par-
ticles

2

AN
n:(X)=1+5+E+O()\3) (20)

and the second-order cumulant
A A?
(X3 —(X)’=—+—+0N\. (21)
2 6
The reduced second-order cumulant u=(X>)/{X)*>—1 will be
N 2
=—|1=2N]+00). 22
B e

The result (20) tells us that the particle number is finite
which implies that the particle density p=n/L will decrease
as 1/L as expected for the subcritical regime. The decrease

PHYSICAL REVIEW E 72, 026130 (2005)

FIG. 6. Reduced second-order cumulant u for the sandpile
model with height restriction as a function of the density of par-
ticles £ for several values of the system size L.

in p with L can be seen in Fig. 1. The second-order cumulant
and u are also finite in the subcritical regime. However, n
and the second-order cumulant diverges at the critical point
whereas u remains finite as can be inferred from Fig. 3 and
from the scaling relations (2) and (3).

IV. SANDPILE WITH HEIGHT RESTRICTION

We have simulated a sandpile model with height restric-
tion corresponding to the independent toppling rules [11],
defined as follows. Each site of a lattice can either be empty
or occupied by one or two particles. Sites with two particles
are said to be active sites. Empty sites and sites with just one
particle are inactive sites. At each time step, a site is chosen
at random. If it is active then each one of the particles
topples, in sequence, to one of the neighboring sites with
equal probability. If the neighboring site is occupied by two
particles, then the particle does not topple.

When the number of particles, which is a conserved quan-
tity, is smaller than the number of sites then the system may
fall in one of the many absorbing configurations. An absorb-
ing configuration is the one having all sites inactive. When
the system falls into one of the absorbing configuration then
an active site is created by moving a particle on the top of
another one.

The order parameter is defined by p=n,/L where n, is the
average number of active sites and L the number of sites in
the lattice. The control parameter is the density of particles
{=n/L where n is the number of particle, which is a con-
served quantity. When {>1 there is always active sites so
that the system is in the active state in this regime. When
{=1 the system might be found in one of the infinity many
absorbing state. There is a critical value {., which is strictly
less than the unity, below which the system is found in the
nonactive state.

We have calculated the order parameter p and the reduced
cumulant u for several values of the system size L. Figure 5
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FIG. 7. Data collapse of probability density P(L,0,x) at the
critical point obtained for several values of L for the sandpile with
height restriction.

shows p versus the density { for several values of the size of
the system L. As expected the order parameter decreases and
vanishes with increasing L in the subcritical regime. Figure 6
shows the reduced second-order cumulant as a function of ¢
for several values of L. The curves cross each other at the
point {. and u.. From the numerical data we found (.
=0.9293(3) which is in fair agreement with the result ob-
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tained by Dickman et al. [11], namely, £,=0.929 65(3).

For the sandpile model it is also possible to get the prob-
ability distribution P(L,e,x) of the density of the active sites
x=n,/L. Figure 7 shows the data collapse of P(L,0,x) at the
critical density obtained by using the value /v, =0.247 es-
timated by Dickman et al. [11]. In this case the simulations
have to be performed on a finite system with L, particles.
Since L{, is not in general an integer number we have used
numbers of particles n and lattice sizes L such that the ratio
n/L is as close as possible to {.. Again, although the values
of L are not large, a reasonable collapse of the data is ob-
tained.

V. CONCLUSION

We have introduced a procedure that allowed us to get the
stationary distribution of models with absorbing states. Two
one-dimensional models were analyzed: the contact process
and a sandpile model with height restriction. The method
presented here permitted the study of the subcritical regime
since the absorbing state has been suppressed. By means of a
finite-size scaling analysis we obtained the critical behavior.
The perturbation introduced is sufficiently small in the sense
that the properties, in the thermodynamic limit, will be the
same as in the unperturbed model.
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